Selasa, 24 Oktober 2017

PRINSIP TELESKOPING

$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+ ...+\frac{1}{2005.2006}=....$
Pembahasan:
$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$
maka soal:
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+ ...+\frac{1}{2004.2005}+\frac{1}{2005.2006}=$ diubah menjadi:
$=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+ ...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}$
Jika kita perhatikan suku kedua dan seterusnya dijumlahkan setiap dua suku maka hasilnya nol, maka diperoleh
$=1-\frac{1}{2006}$
$=\frac{2005}{2006}$

0 comments:

Posting Komentar

popcash